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Note 

Gaussian Matrix Elements of the 
Free-Particle Green’s Function* 

1. INTRODUCTION 

Recently we proposed a method for calculating electron-molecule scattering cross 
sections which requires the evaluation of matrix elements of the free-particle Green’s 
function over Cartesian Gaussian basis function [l]. This arises when the scattering 
potential, V, is approximated by a sum of separable terms of the form 

where 

vu8 = 1 d(r) WI v& d3r, (2) 

and the basis functions y,(r) are Cartesian Gaussian functions. If the truncated 
potential, Eq. (l), is inserted, the Lippmann-Schwinger equation for the transition 
operator 

Tt = Ut + UtG,+Tt (3) 

becomes a matrix equation with elements 

where U = 2V and GO+ is the free-particle Green’s function. Equation (3) is then 
solved by a simple matrix inversion. This procedure requires the evaluation of the 
matrix elements of GO+ over the basis functions v,(r). For molecular systems a con- 
venient choice of functions for the expansion of the potential, Eq. (l), is Cartesian 
Gaussian basis functions. A large number of such Gaussian functions can be required 
to adequately represent a scattering potential, and hence it is important to have an 
efficient procedure for the evaluation of the matrix elements (Gc+)as . 

In this paper we present a method for generating analytic formulas for Gaussian 
matrix elements of the free-particle Green’s function. The method is based on 
Ostlund’s technique for evaluating scattering integrals involving Gaussian and plane 
wave functions [2], but it derives its simplicity from some recursive properties of the 
spherical Bessel functions. 

* Supported by a grant from the National Science Foundation. 
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In Section 2 we present our technique for deriving formulas for Gaussian matrix 
elements of Go+. Our results are tabulated in Section 3 for matrix elements involving 
Cartesian Gaussian functions of up to f-type symmetry. The formulas given are valid 
for polyatomic systems, but only those combinations of Gaussian functions which 
contribute to the Z, 17, and d symmetries of a linear molecule are listed. 

2. THEORY 

The free-particle Green’s function satisfies the equation 

(V2 + k2) G&k; r, r’) = 6(r - r’). (5) 

The solution for the outgoing wave boundary condition is 

1 eilclr--r’l 
Go+@; r, 0 = - 4rr , r _ r, , , (64 

and the solution for the standing wave boundary condition is the principal-value 
Green’s function 

GP(k. 2 r 9 r? _ ’ . ‘Osck 1 !: -1 1) 
437 [r-r’1 

’ 

We are interested in matrix elements of the form (&$ 1 Go+ 1 &‘;$,,), where &,$ is a 
normalized Cartesian Gaussian function with center at A, 

EL%: = IV,,& - A$ (y - Av)m (2 - A,)” e-“lr-AIP, (7) 

where N,,, is a normalization factor 

and 

N-l = [(21 - l)!! (2m - l)!! (2n - 1)!!]1/2 ?i- 3/4 
zmn (2,1/2)z+m+n ( ) 201 (8) 

n!! = n(n - 2)(n - 4) -** 1. 

Taking Fourier transforms, we obtain the integral representation 

(9) 

where E = k,,2/2. The Fourier transform of a Gaussian function may be evaluated by 
elementary methods and is given by 

(/$,$I k) = (+)“” 
jZ+m+n 

[(21- l)!! (2m - l)!! (2n - 1)!!]1/2 

x eik*A-ka’4uHz (&) H, (&) H, (-&), (11) 
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where Hz is the Hermite polynomial of order I. Introducing the Cauchy principal value, 
Eq. (10) may be written in the form 

where P denotes the Cauchy principal-value integral and the second term is the residue. 
The corresponding matrix element for the principal-value Green’s function is 

Evaluation of the residue term on the r.h.s. of Eq. (12a) is straightforward. Eval- 
uation of the first term, which is just the matrix element of G,,p, is the subject of this 
paper. Substituting Eq. (11) into Eq. (12b) and using the expansion of the plane wave 

eik.R = 4~ & iLj,(kR) Y&I?) Y;,&, (13) 

where 
R=A-B, (14) 

leads to the expansion 

(P;,‘,& I 6’ I &$n ,> = 1 i’C(Zmn, I ‘m’n’) fLM(kO , a, /3; lmn, l’m’n’) YLM(&), (15) 
LA4 

where 

2 l/2 
C(lmn; l’m’n’) = - T 

i ) 
1 

w [(21- I)!! (2m - I)!! (2n - I)!! (21’ - I)!! 

X (2m’ - I)!! (2n’ - 1)!!]1/2 jl-Z’+m-m’+fi-n’ (16) 

and 

f&(k,, , 01, p; imn, I’m’n’) 

Evaluation of the coefficients,&, , leads to integrals of the form 

(17) 

ILP = P 
f 

O” dk kPe-“kajL(kR) 
0 k2 - koZ ’ (18) 
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where 

and 

The evaluation of matrix elements of GOP for all combinations of Cartesian Gaussian 
functions of up to&type symmetry requires the integrals I,p for 0 < L < 6,2 < p < 8. 
The straightforward way to obtain all these IL* is to differentiate the lower-order ones, 
i.e., in L and p, successively with respect to a and R. However, by using the recursive 
properties of the spherical Bessel functions, i.e., 

(2L + 1) 
kR jXW = jL-&W + jL&R), 

we can establish the relation 

(20) 

With the result, Eq. (21), we need only obtain lop, p = 4, 6,8 and IIP, p = $7 by 
successive differentiations. To see this we start from the relation, pointed out by 
Ostlund [2], of Zo2 to the error function of the complex argument 

12 = A!- e-ape Re [eig, erf (’ + i(a)“’ q)]; 
2R 4 = k,. (22) 

The formula for 1,” is obtained by differentiating Eq. (22) with respect to R: 

I13 = 2 e-d Re 
K 

1 
2 

- - i $$-) ei@R erf (& + i(a) q)] - q s. 
R2 (23) 

3. RESULTS 

We have used this approach to obtain explicit expressions for the matrix elements 
of the Green’s function with Cartesian Gaussian functions of S, p, d, and f-type. For 
convenience we list the matrix elements appropriate for axially symmetric molecules, 
i.e., ,JY, 17, and A cases. The matrix elements for the LY, fl, and A symmetries are shown 
in Tables I, II, and III, respectively. 

In Table IV we also give actual numerical values for matrix elements of the Green’s 
function for several choices of Gaussian basis functions. In these calculations we used 
a program based on Gautschi’s algorithm for evaluating the complex error function [3]. 
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TABLE I 

Matrix Elements of the Principal-Value Part of the Free-Particle Green’s Function for C Cases’sL*c 

I 

ZZA - ZZ-” = $ 
I 
& P,I,B - & P,Ia6 + ; BP&’ - & IO6 

- # B;,’ + 4I,= 

a (Y 

A 
ZZZA -s-“=- 

(15)1/S ! 
- & paIs= + & PII,’ - -$ PII,’ 

zzz”-&A- - 
I 

8 4 1 
(15)1/a 3501(a~)‘~4 

P&Id3 + ____ P&,6 - ~ 
7oL(qq11 

4 -- 
ewe 

10 1 48 B 
-- 

7(4)3’3 

a A, B, and B* are defined as 

where (I and /3 are the exponents of the Cartesian Gaussian function. 
5 The argument of all PL is Il. 

cSA, Zt’, ZZ4 are related to p*‘* tmn of Eq. (7) as follows: SA = LiO*, z” = g;;, ZZA = g$. 

Higher orders follow analogously. ZZZ! - ZZZB is a shorthand notation for (z$I GlcD) 1 &r> 
of Eq. (15). 
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TABLE II 

Mat& Elements of the Principal-Value Part of the Free-Particle Green’s Function for I7 Chsesa*b,G 

xz? -xz’! i= A - I’ (G)“l Q1212 - ; (g)“’ Q22I26 - ; P,IdB 
ap 21 

1 1 Qa21b5 - - P,I,6 - - PJ13 
5 5 

xzz”” -&$=A l 
- ] - & (F)“” Q52L’ -t ; (&)I’* Qs21,’ 311’ (apla 

o See footnote a of Table I for the definitions of A, B, and B*. 
b We define QLM = YLM + YL--M. 
= ti, x29, and XZZh are related to &t of Eq. (7) as follows: X’ = p$, X2-A = ,L$, and 

XZZA = &f. Also see footnote c of Table I. 
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TABLE III 
Matrix Elements of the Principal-Value Part of the Free-Particle Green’s Function for A Cases= 

(1 See footnotes a, b, and c of Table II. 

TABLE IV 
Some Numerical Values for Matrix Elements of the FreeParticle Green’s Function 

A. Z Symmetry cases 

Basis functions Matrix element’ 

l-l -0.16922(-3) -0.10364-6) 
1-2 -0.35845(-3) -0.42964-6) 
2-3 -0.40672(-2) -0.306211(-4) 
44 -0.12444(-l) -0.59651(-g) 
4-5 -0.98178(-2) -0.34388(-5) 
6-6 -0.88728 -0.46259( - 1) 
6-3 -0.10915 -0.49350( -2) 
3-7 -0.23692 -0.23196( -1) 
3-9 0.334011(-2) -0.52021(-6) 
3-8 0.182042 -o.l902q--1) 
4-8 0.27396(-2) -0.143465(-5) 
6-8 -0.16438(l) -0.17828 

The exponents, symmetry type, and coordinates of basis functions 1 to 9 are 

Basis function Type 

1 S 
2 S 
3 S 
4 Z 
5 Z 
6 zz 
7 S 
8 zz 
9 Z 

Exponent 

5909.44 
887.451 

19.9981 
26.786 
0.1654 
1.225 
0.128 
0.202 
5.9564 

Coordinates 

(‘A’& R) 
(‘X0, R) 
(0, 0, R) 
(0, 0, R) 
(‘&‘A RI 
(0, 0, N 
(0707 0) 
(0, 0, 0) 
(0, 0, R) 

R = -1.034 a.u., and (a, b, c) are the coordinates of the Cartesian Gaussian function. 

a For k, = 0.03756808. The two columns are the real and imaginary parts of the matrix element, 
and the numbers in parentheses are the powers of ten by which the numbers are to be multiplied. 

Tile continued 
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TABLE IV-Continued 
- --_ -.__~ 

B. Zl Symmetry cases 
-_ 

Basis functions Matrix element* 
.._... - 

1-l -0.166675(--2) -0.7385(-g) 
l-2 -&73788( -3) -0.96335(-5) 
3-3 -0.200066( - 1) -0.26408( -9) 
2-3 0.49331(-l) 0.14935(-4) 
3-4 -0.106265(--l) -0.497154(-7) 
l-6 -0.255868( - 6) -0.73535(-9) 
4-5 -0.96181(- 1) -0.27830(-5) 

The exponents, symmetry type, and coordinates of basis functions 1 to 6 are 

-- 

Basis function 
~. 

1 
2 
3 
4 
5 
6 

R = - 1.034 a.u. 

Type 
~- 

X 
X 
xz 
xz 
xz 
X 

Exponent Coordinates 

200. GO, R) 
0.1 GAO, R) 

10.0 (0, 0, RI 
0.5 (0, 0. R) 
1.0 a 0, 0) 

200. (0, 0, --R) 

* For k,, = 0.1. See also footnote a. 

4. CONCLUSIONS 

We have described an efficient method for generating analytic formulas for Gaussian 
matrix elements of the free-particle Green’s function. The method is based on 
Ostlund’s technique for evaluating integrals involving Gaussian and plane wave 
functions, but it derives its simplifying features from some recursive properties of 
spherical Bessel functions. The procedure is straightforward and avoids a great deal 
of the successive differentiations previously involved in generating these matrix 
elements. The method is applicable to general polyatomic systems. 

APPENDIX: THE BASIC INTEGRALS ILp, EQ. (18), 
FORO<L,<6,2<p<8 

The basic integrals I=” which define the matrix elements of the principal value of 
the Green’s function through Eq. (17) are listed for the cases 0 < L < 6, 2 < p < 8. 
The IL” for 2 < L < 6, 4 < p < 8 are related to the first seven ZL” below through 
Eq. (21). 

58x/28/3-9 
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loa = z cag8 Re [eiqR erf (& + i(a)‘/” q)], 2R 

lo4 = q2&2 + T a-3/2e-Ra/40 
7 

1,s = q2&4 - T e-kP/4a 

I 

R2a-712 3 
- 4 - z a-5/2 1 , 

791” 
Z,,S = q2],,6 - 4 e-R*/4a [ - $ 

5 a-"/2 $ - R2a-912 _ 15 -ea-7/2 
I 

Z13 = f e-Oq* Re [(f - $) ei@R erf (i + i(a)'/2 qi - 4 e-R'/40 q, 

77w 
I15 = q2&3 + 8 e-R4/4~&-5/2, 

7912 
4’ = q”Q + 8 @*Ia (; 

R3 
j&-7/2 - _ 

4 a-s'2 1 , 

z24 = 4 I13 - 104, 

Zz6 = ; 116 - Zo6, 

128 = $ 11' - Zo6, 

z35 = -115 + -g Zl" - 4 zo4, 

1,' = -Z1' + g z15 - ; Z66, 

Z46 = - ; 115 + g I13 + I,6 - g zoo, 

z43 = - g Zl' + g z15 + z,8 - -g Zo6, 

167 = II7 - g I15 + z!$ II3 + g lo6 - g 164, 

1s =21z7- mo 3465 
6 R' 7 Zl" + gp z13 - I()* + g lo6 - R" 104. 
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